Adobe Stock
Są sytuacje, w których ludzkie oko wychwytuje niezauważalne zazwyczaj promieniowanie podczerwone. Naukowcy z warszawskiego ICTER opracowali metodę oceniania jasności uzyskiwanej w tym tzw. widzeniu dwufotonowym. Otwiera to – ich zdaniem – nowe perspektywy dla diagnostyki okulistycznej i technik wirtualnej rzeczywistości.
Promieniowanie podczerwone jest zwykle niewidoczne dla ludzkiego oka. To dlatego nie widzimy światełka diody w pilocie do telewizora, a żeby widzieć w ciemności – przydają się nam noktowizory, termowizory i kamery IR. Od tej reguły są jednak pewne odstępstwa.
Dekadę temu międzynarodowy zespół kierowany przez Polaków pokazał, że człowiek widzi superkrótkie impulsy lasera z zakresu bliskiej podczerwieni. Takie błyski – w zależności od długości użytej w doświadczeniu fali – mogą wydawać się np. zielone lub niebieskie. To nieznane wcześniej zjawisko określono mianem widzenia dwufotonowego.
Polacy w ramach Międzynarodowego Centrum Badań Oka (ICTER) pracują nad wykorzystaniem tego rozwiązania w praktyce – np. w zaawansowanych badaniach diagnostycznych, szczególnie w neurologii i okulistyce, gdzie impulsy podczerwone pozwalają na bezpieczne monitorowanie funkcji wzrokowych bez konieczności użycia bardziej inwazyjnego światła widzialnego. Z drugiej strony widzenie dwufotonowe umożliwia tworzenie nowych, realistycznych doznań wizualnych w interakcji z obrazami wirtualnymi (VR/AR).
Zanim jednak zastosowania trafią na rynek – trzeba jeszcze umieć określić standardy w emisji takich “niewidzialnych fotonów” i obiektywnie ocenić to, jak intensywne wydaje się światło podczas takiego doświadczenia. Dotąd zaś wiadomo było, jak to zrobić tylko w przypadku światła widzialnego.
Naukowcy ICTER pokazali więc, jak określić wartość luminancji dla podczerwieni. Dzięki temu podejściu możliwe było powiązanie luminacji bodźców dwufotonowych z nową wielkością fizyczną związaną z postrzeganą jasnością: dwufotonowym natężeniem oświetlenia siatkówki. O badaniach poinformowali przedstawciele ICTER w przesłanym PAP komunikacie.
JAK DZIAŁA WIDZENIE DWUFOTONOWE?
Fotony promieniowania podczerwonego mają sporą długość fali, a w związku z tym ich energia jest za mała, aby pobudzić receptory w ludzkim oku. Dopiero impulsy o większej energii oddziałują z cząsteczkami w siatkówce. A dzięki temu uzyskujemy wrażenie kolorów – od czerwonego (długość fali ok. 780 nm) do fioletowej (ok. 380 nm). Bywa jednak tak, że dwa fotony promieniowania podczerwonego “łączą siły” i oba jednocześnie pochłaniane są przez siatkówkę oka. To odbierane jest z kolei jako impuls z fotonu o dwa razy większej energii (i dwa razy mniejszej częstotliwości), a więc już z zakresu światła widzialnego. W ten sposób “niewidzialne dotąd fotony zyskują w naszych oczach całkiem realny kolor.
Wyniki badań naukowców z ICTER dr inż. Katarzyny Komar i prof. Macieja Wojtkowskiego z udziałem doktorantki Oliwii Kaczkoś opublikowano w Biomedical Optics Express.
Dzięki przeprowadzonym pomiarom, naukowcy byli w stanie wykazać związek między mocą wiązki podczerwieni a mocą wiązki widzialnej, która została subiektywnie dostosowana tak, aby obie były postrzegane jako mające tę samą luminancję. W ten sposób udało się określić subiektywną luminancję bodźców podczerwonych przy użyciu jednostek fotometrycznych (cd/m2). Wyniki te podkreślają nieliniową naturę widzenia dwufotonowego, co jest zgodne z poprzednimi badaniami.
“Nowe podejście umożliwi m.in. porównanie jasności bodźców dwufotonowych z tradycyjnymi wyświetlaczami bazującymi na standardowym, jednofotonowym widzeniu” – mówi Oliwia Kaczkoś, doktorantka ICTER i optometrystka, główna autorka badań.
Oryginalny artykuł na stronie IChF PAN.
PAP – Nauka w Polsce
lt/