Fragment kolidera w Brookhaven National Laboratory USA, autor: Z22, źródło: Wikipedia (https://en.wikipedia.org/wiki/Relativistic_Heavy_Ion_Collider)
Hiperjądro antymaterii składające się z czterech cząstek zarejestrowano przy amerykańskim zderzaczu RHIC (Relativistic Heavy Ion Collider). Antyhiperwodór-4 to najcięższa na razie egzotyczna struktura jądrowa ze świata antymaterii. W eksperymencie STAR udział brali również Polacy.
W Brookhaven National Laboratory, w ramach eksperymentu STAR przy Relatywistycznym Zderzaczu Ciężkich Jonów (RHIC) – „rozbijaczu atomów” odtwarzającym warunki wczesnego Wszechświata, naukowcy zaobserwowali nie tylko pojedyncze cząstki antymaterii, ale całe ich struktury – jądra składające się z czterech cząstek: antyprotonu, dwóch antyneutronów i jednego antyhiperonu, a więc antyhiperwodór-4. Publikacja ukazała się na łamach „Nature”.
Najbardziej powszechne w naszym otoczeniu jądra atomowe składają się z neutronów i protonów. A te z kolei składają się z kwarków dolnych i górnych. Są jednak analogiczne do neutronów i protonów struktury, które zawierają nietypowe dla zwykłej materii kwarki – kwarki dziwne. Jeśli jakieś neutrony, protony i hiperon połączą się ze sobą – powstaje tzw. hiperjądro. A w RHIC wyprodukowano takie właśnie hiperjądro wodoru z antymaterii.
Ponad dekadę wcześniej zaobserwowano już jądro antyhelu-4. Tym razem przyszła pora na bardziej egzotyczne jądro.
To nie lada wyzwanie, bo wszystkie te cząstki antymaterii musiały powstać bardzo blisko siebie i w podobnym czasie, aby były w stanie się połączyć w większą strukturę jądrową. A kiedy przyciągały się, aby się połączyć, nie mogły napotkać przeszkód, bo to doprowadziłoby do anihilacji. Tymczasem w RHIC do anihilacji doszło dopiero kiedy powstało antyhiperjądro.
Po co szukać tej igły w stogu siana?
Wcale nie było łatwo znaleźć sygnały z takiej anihilacji w wynikach doświadczeń, które uwzględniału dane na temat 6 miliardów zderzeń cząstek zebranych w urządzeniu. Naukowcy zmierzyli m.in. czasy rozpadu antyhiperjąder i ich odpowiedników ze świata materii. To kolejny pomysł na poszukiwanie różnic między materią a antymaterią.
Tuż po Wielkim Wybuchu – jak można przypuszczać – powstać powinny równe liczby cząstek materii i antymaterii. Cząstka i jej antycząstka są identyczne, ale mają przeciwny ładunek i lustrzaną symetrię. A kiedy się spotkają – dochodzi do anihilacji, w której uwalniana jest energia. Wydawałoby się, że wszystkie cząstki i antycząstki podczas Wielkiego Wybuchu powinny powstać w takiej samej ilości i szybko zmienić się w energię w procesach anihilacji. Ale tak się nie stało, bo od miliardów lat istniejemy my, Wszechświat… i cała reszta. Składamy się przecież z materii, a antymateria jest u nas rzadkim gościem.
Za przetrwanie materii musiały odpowiadać jakieś różnice między nią a antymaterią. Niektóre z tych różnic znamy od lat, ale nie wystarczyłyby one, aby uformować Wszechświat. Dlatego poszukuje się kolejnych różnic.
„Fakt zaobserwowania hiperjądra antymaterii otwiera nowe możliwości badania jego własności – nie tylko w postaci zarejestrowanych przypadków, czy szacowania czasów życia, ale także bardziej zaawansowanych pomiarów dotyczących np. zachowań kolektywnych, mechanizmów produkcji, procesów rozpadu, a wręcz samej anihilacji z cząstkami materialnymi” – komentuje dla PAP prof. Hanna Zbroszczyk z Politechniki Warszawskiej, której zespół zaangażowany jest w eksperyment STAR w RHIC.
PAP – Nauka w Polsce, Ludwika Tomala
lt/ zan/