Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the gd-rating-system domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /home/gibnews/htdocs/gibnews.pl/wp-includes/functions.php on line 6121
Wyprodukowano najcięższe jądro egzotycznej antymaterii - antyhiperwodór-4 - Gospodarka i Biznes News

Wyprodukowano najcięższe jądro egzotycznej antymaterii – antyhiperwodór-4

Fragment kolidera w Brookhaven National Laboratory USA, autor: Z22, źródło: Wikipedia (https://en.wikipedia.org/wiki/Relativistic_Heavy_Ion_Collider) Fragment kolidera w Brookhaven National Laboratory USA, autor: Z22, źródło: Wikipedia (https://en.wikipedia.org/wiki/Relativistic_Heavy_Ion_Collider)

Hiperjądro antymaterii składające się z czterech cząstek zarejestrowano przy amerykańskim zderzaczu RHIC (Relativistic Heavy Ion Collider). Antyhiperwodór-4 to najcięższa na razie egzotyczna struktura jądrowa ze świata antymaterii. W eksperymencie STAR udział brali również Polacy.

W Brookhaven National Laboratory, w ramach eksperymentu STAR przy Relatywistycznym Zderzaczu Ciężkich Jonów (RHIC) – „rozbijaczu atomów” odtwarzającym warunki wczesnego Wszechświata, naukowcy zaobserwowali nie tylko pojedyncze cząstki antymaterii, ale całe ich struktury – jądra składające się z czterech cząstek: antyprotonu, dwóch antyneutronów i jednego antyhiperonu, a więc antyhiperwodór-4. Publikacja ukazała się na łamach „Nature”.

Najbardziej powszechne w naszym otoczeniu jądra atomowe składają się z neutronów i protonów. A te z kolei składają się z kwarków dolnych i górnych. Są jednak analogiczne do neutronów i protonów struktury, które zawierają nietypowe dla zwykłej materii kwarki – kwarki dziwne. Jeśli jakieś neutrony, protony i hiperon połączą się ze sobą – powstaje tzw. hiperjądro. A w RHIC wyprodukowano takie właśnie hiperjądro wodoru z antymaterii.

Ponad dekadę wcześniej zaobserwowano już jądro antyhelu-4. Tym razem przyszła pora na bardziej egzotyczne jądro.

To nie lada wyzwanie, bo wszystkie te cząstki antymaterii musiały powstać bardzo blisko siebie i w podobnym czasie, aby były w stanie się połączyć w większą strukturę jądrową. A kiedy przyciągały się, aby się połączyć, nie mogły napotkać przeszkód, bo to doprowadziłoby do anihilacji. Tymczasem w RHIC do anihilacji doszło dopiero kiedy powstało antyhiperjądro.

Po co szukać tej igły w stogu siana?

Wcale nie było łatwo znaleźć sygnały z takiej anihilacji w wynikach doświadczeń, które uwzględniału dane na temat 6 miliardów zderzeń cząstek zebranych w urządzeniu. Naukowcy zmierzyli m.in. czasy rozpadu antyhiperjąder i ich odpowiedników ze świata materii. To kolejny pomysł na poszukiwanie różnic między materią a antymaterią.

Tuż po Wielkim Wybuchu – jak można przypuszczać – powstać powinny równe liczby cząstek materii i antymaterii. Cząstka i jej antycząstka są identyczne, ale mają przeciwny ładunek i lustrzaną symetrię. A kiedy się spotkają – dochodzi do anihilacji, w której uwalniana jest energia. Wydawałoby się, że wszystkie cząstki i antycząstki podczas Wielkiego Wybuchu powinny powstać w takiej samej ilości i szybko zmienić się w energię w procesach anihilacji. Ale tak się nie stało, bo od miliardów lat istniejemy my, Wszechświat… i cała reszta. Składamy się przecież z materii, a antymateria jest u nas rzadkim gościem.

Za przetrwanie materii musiały odpowiadać jakieś różnice między nią a antymaterią. Niektóre z tych różnic znamy od lat, ale nie wystarczyłyby one, aby uformować Wszechświat. Dlatego poszukuje się kolejnych różnic.

„Fakt zaobserwowania hiperjądra antymaterii otwiera nowe możliwości badania jego własności – nie tylko w postaci zarejestrowanych przypadków, czy szacowania czasów życia, ale także bardziej zaawansowanych pomiarów dotyczących np. zachowań kolektywnych, mechanizmów produkcji, procesów rozpadu, a wręcz samej anihilacji z cząstkami materialnymi” – komentuje dla PAP prof. Hanna Zbroszczyk z Politechniki Warszawskiej, której zespół zaangażowany jest w eksperyment STAR w RHIC.

PAP – Nauka w Polsce, Ludwika Tomala

lt/ zan/



Źródło

No votes yet.
Please wait...

Dodaj komentarz

Twój adres e-mail nie zostanie opublikowany. Wymagane pola są oznaczone *